metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

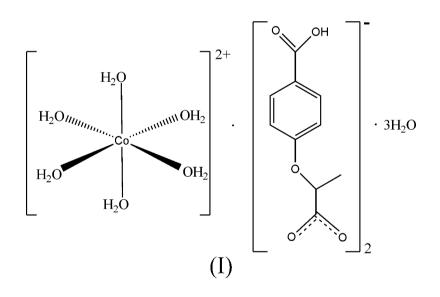
Zhao-Peng Deng, Shan Gao* and Peng-Gang Chen

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.002 \text{ Å}$ Disorder in solvent or counterion R factor = 0.033 wR factor = 0.100 Data-to-parameter ratio = 15.6

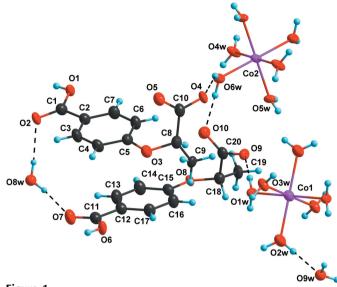

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexaaquacobalt(II) bis[2-(4-carboxyphenoxy)propionate] trihydrate

The title complex, $[Co(H_2O)_6](C_{10}H_9O_5)_2\cdot 3H_2O$, consists of $[Co(H_2O)_6]^{2+}$ cations and 2-(4-carboxylatophenoxy)propionate anions along with uncoordinated water molecules. The Co atoms, which each lie on a center of symmetry, have octahedral coordination. The cations and anions are linked by $O-H\cdots O$ hydrogen bonds into a three-dimensional supramolecular framework.

Comment

The structure of 3-(4-carboxylatophenoxy)propionic acid [3-(p-CPOPH₂)] has been reported recently (Gao & Ng, 2006); the present study used isomeric 2-(4-carboxylatophenoxy)-propionic acid [2-(p-CPOPH₂)] in an attempted synthesis of the cobalt derivative. Our previous work detailed the structure of the cobalt(II) derivative of 3-(p-CPOPH₂) (Xiao *et al.*, 2006); the present synthesis afforded hexaaquacobalt(II) 2-(4-carboxyphenoxy)propionate hexahydrate, (I) (Fig. 1).



Both the two independent Co^{II} atoms, which lie on inversion centers, are six-coordinate in octahedral environments. In the anion, the oxyacetate group and aromatic ring are twisted by 67.93 (17) (C5–O3–C8–C10) and 110.84 (17)° (C15–O8–C18–C20). The cations and anions are linked by extensive hydrogen bonds into a three-dimensional supramolecular network (Table 2).

Experimental

© 2007 International Union of Crystallography All rights reserved Cobalt(II) acetate trihydrate (2.28 g, 10 mmol) was added to a hot aqueous solution of 2-(4-carboxylatophenoxy)propionic acid (2.10 g,

Received 19 December 2006 Accepted 19 December 2006

The asymmetric unit of (I), together with symmetry-equivalent aqua ligands to complete the coordination. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Hydrogen bonds are denoted by dashed lines. The disordered water molecule is not shown. [Symmetry codes for unlabeled ligands bonded to Co1 and Co2: 1 - x, 1 - y, 1 - z and -x, -y, 1 - z, respectively.]

10 mmol). Sodium hydroxide (0.1 M) was added dropwise until the solution registered a pH of 6. The filtered solution was allowed to evaporate at room temperature, and pink prismatic crystals of (I) were separated from the filtered solution after several days. Analysis calculated for C40H72C02O38: C 37.57, H 5.67%; found: C 37.62, H 5.64%.

Crystal data

$[Co(H_2O)_6](C_{10}H_9O_5)_2 \cdot 3H_2O$	Z = 4
$M_r = 637.40$	$D_x = 1.461 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 8.0171 (16)Å	$\mu = 0.67 \text{ mm}^{-1}$
b = 13.288 (3) Å	T = 295 (2) K
c = 27.352 (6) Å	Prism, pink
$\beta = 95.99 \ (3)^{\circ}$	$0.36 \times 0.28 \times 0.19$ mm
$V = 2898.0 (10) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $\tilde{T}_{\min} = 0.794, \ \tilde{T}_{\max} = 0.883$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.100$ S = 1.046615 reflections 424 parameters H atoms treated by a mixture of independent and constrained refinement

ım

45283 measured reflections 6615 independent reflections 5127 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.031$ $\theta_{\rm max} = 27.5^\circ$

 $w = 1/[\sigma^2(F_0^2) + (0.0551P)^2]$ + 0.6509P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Table 1		
Selected geometric parameters	(Å,	°).

Co1-O2W	2.0825 (13)	Co2-O4W	2.0661 (15)
Co1-O3W	2.0888 (13)	Co2-O5W	2.0710 (14)
Co1-O1W	2.0897 (12)	Co2-O6W	2.1042 (14)
$O2W-Co1-O2W^{i}$	180	$O4W^{ii}$ -Co2-O4W	180
O2W-Co1-O3W	93.97 (6)	$O4W-Co2-O5W^{ii}$	91.37 (8)
$O2W^i - Co1 - O3W$	86.03 (6)	O4W-Co2-O5W	88.63 (8)
O3W-Co1-O3W ⁱ	180	$O5W^{ii}$ -Co2-O5W	180
$O2W-Co1-O1W^{i}$	93.01 (5)	$O4W^{ii}$ -Co2-O6W	88.21 (7)
$O3W-Co1-O1W^{i}$	90.21 (6)	O4W-Co2-O6W	91.79 (7)
O2W-Co1-O1W	86.99 (5)	$O5W^{ii}$ -Co2-O6W	89.92 (6)
O3W-Co1-O1W	89.79 (6)	O5W-Co2-O6W	90.08 (6)
$O1W^i - Co1 - O1W$	180	$O6W-Co2-O6W^{ii}$	180

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y, -z + 1.

Table 2			
Hydrogen-bond	geometry	(Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1W1\cdots O5^{iii}$	0.844 (9)	1.802 (10)	2.6404 (18)	172 (2)
$O1W - H1W2 \cdots O9$	0.834 (9)	2.064 (12)	2.8566 (18)	158.5 (18)
$O2W - H2W1 \cdots O9W$	0.809 (9)	1.935 (11)	2.7277 (18)	166 (2)
$O2W - H2W2 \cdot \cdot \cdot O2^{iv}$	0.817 (9)	1.946 (11)	2.7405 (17)	164 (2)
$O3W - H3W1 \cdots O4^{v}$	0.823 (9)	1.972 (10)	2.7921 (18)	174 (2)
$O3W - H3W2 \cdots O8W^{iv}$	0.826 (9)	1.969 (9)	2.790 (2)	172 (2)
$O4W-H4W1\cdots O7^{vi}$	0.826 (10)	1.958 (10)	2.782 (2)	176 (3)
$O4W - H4W2 \cdots O9W^{vii}$	0.820 (10)	2.003 (12)	2.778 (2)	157 (3)
O6W−H6W1···O10	0.835 (9)	1.841 (10)	2.6740 (19)	175 (2)
O6W−H6W2···O4	0.821 (9)	2.378 (15)	3.1094 (19)	148.7 (19)
O8W−H8W1···O2	0.824 (19)	2.00 (2)	2.821 (2)	171 (2)
O8W−H8W2···O7	0.83 (2)	1.963 (10)	2.7860 (19)	170 (3)
$O9W - H9W1 \cdots O9^{i}$	0.848 (9)	1.911 (10)	2.7497 (19)	169 (2)
O9W−H9W2···O4 ⁱ	0.841 (9)	1.924 (10)	2.7531 (18)	168 (2)
$O1-H100\cdots O5^{viii}$	0.822 (10)	1.829 (10)	2.6452 (16)	172 (3)
$O6-H200\cdots O10^{iv}$	0.807 (10)	1.851 (11)	2.6485 (16)	170 (3)

-x, -y + 1, -z + 1; (vi) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2};$ (vii) x - 1, y - 1, z; (viii) $-x - \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}.$

Carbon-bound H atoms were placed in calculated positions, with C-H = 0.93-0.97Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and $U_{iso}(H) =$ $1.2U_{eq}(C)$ for the other H atoms, and were refined in the riding-model approximation. The uncoordinated water molecule O7W is disordered over two positions; the occupancies of O7W and O7W' refined to 0.783 (4) and 0.217 (4). H atoms could not be placed in any chemical sensible positions owing to the disorder. Other H atoms of the water molecules and hydroxyl groups were located in a difference Fourier map and refined with O-H and H···H distance restraints of 0.82 (1) and 1.39 (1) Å, respectively, and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Provincee (1054 G036) and Heilongjiang University for supporting this study.

References

Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, 03420–03421.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Xiao, Y.-H., Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, m2274-m2276